
Message Buffering and its Effect on the

Communication Performance of Parallel Computers

William Saphir 1

Report RNS-94-004 April 1994

Abstract

A primary barrier to obtaining high performance on distributed memory parallel comput-
ers is Ix)or internode communication performance. Access to remote data has historically

been orders of magnitude slower (higher latency and lower bandwidth) than access to

local data. In recent generation parallel computers, however, internode bandwidth

approaches local memory bandwidth. This change in system balance increases the effect

of message buffering on communication performance, since the time to copy a message to
or from a local buffer is comparable to the time to transfer the message across the network.

The performance degradation introduced by message buffering is illustrated on the Intel

Paragon (running OSF/1 R1.1.4), where bandwidth for unbuffered NX messages is

approximately 35 megabytes per second (MB/s), bandwidth for buffered NX messages is
less than 5 MB/s, and bandwidth for PVM messages, which are buffered at least twice, is

approximately 2 MB/s. Buffering may also interfere with attempts to optimize perfor-

mance by overlapping communication with computation.

Message passing libraries differ considerably in their buffering of messages. I discuss in

detail the buffering characteristics of NX on the Intel Paragon and CMMD on the Think-

ing Machines CM-5, as well as buffering in the "portable" libraries PVM and MPI. l

describe the strengths and weaknesses of these libraries with respect to message buffer-

ing, concluding that CMMD is well-designed for high performance on fast networks and
MP1 for portable performance on both slow and fast networks. NX suffers from design

flaws but can be made to perform efficiently. PVM, while appropriate for ethernet-con-

nected workstations, belies its reputation as a portable and robust de facto standard by

performing poorly on parallel computers with fast networks.

1. Numerical Aerodynamic Simulation (NAS) Systems Division, MS 258-6, NASA Ames Research
Center, Moffett Field, CA 94035-1000 (wcs@nas.nasa.gov). The author is an employee of Computer
Sciences Corporation, NASA Contract NAS 2-12961

1.0 Introduction

Distributed memory parallel computers have not yet fulfilled their

promise to replace vector supercomputers for general purpose scientific

computation. While parallel computers solve certain types of problems

efficiently, they don't perform as well on problems with global data

dependencies, such as the simulation of fluid flow using implicit

methods [1, 2]. The efficient solution of these problems requires very fast

data transfer between the nodes of the parallel computer.

Internode communication performance is limited fundamentally by

internode network hardware, but is reduced further by software

overhead. One of the most important but overlooked sources of overhead

is buffering. One says that transferred data (usually called a "message")

is buffered when the transfer mechanism makes a temporary copy of the
data between its source and destination.

Buffering has three important effects.

• Buffering reduces the effective bandwidth for data transfer, because

copying data to or from a buffer takes extra time.

• Buffering reduces the performance benefit of overlapping commu-

nication and computation. While network data transfers can be per-

formed independently of the processor, buffer copying can't be

overlapped with computation because it is performed by the proces-
sor itself.

• Buffering increases memory use, effectively decreasing the amount

of memory available to an application. This does not directly affect

performance.

Buffering has historically had little effect on performance. In recent

generation high performance parallel computers, however, internode

network bandwidth approaches local memory bandwidth. With this

change in system balance, the time to copy data to or from a buffer can be

comparable to the time to transfer data across the network. This

magnifies the performance effects of buffering to the point where they are

intolerable for the most demanding applications.

An analysis of the performance implications of buffering is most

straightforward for the so-called "message-passing" paradigm for

parallel computation, where an independent thread of control is

associated with each node of a parallel computer, and nodes exchange

data using a cooperative send/receive mechanism. Most message

passing codes are of the SPMD (Single Program, Multiple Data) type, in

which each node runs (asynchronously) a separate copy of the same

program.

2

I evaluate four important messagepassing libraries representing four
completely different approachesto messagebuffering.

NX [3] is the native message passing library on Intel Parallel

Supercomputers, including the Paragon, the iPSC/860 (Hypercube) and

Delta. NX message buffering is complex and nondeterministic,

applications can avoid buffering only by using explicit synchronization.

Buffering has a moderate but unpredictable effect on performance.

CMMD [4] is the native message passing library on the Thinking

Machines CM-5. CMMD allows applications to avoid buffering almost

entirely. With respect to message buffering, it is well-designed for fast
networks.

PVM (Parallel V'trtual Machine) [5] is a portable library that runs on both

tightly coupled multiprocessors and networks of workstations. PVM

buffers messages twice explicitly and sometimes implicitly in the

underlying transport layer. While this behavior is appropriate for

networks of workstations, it makes PVM very inefficient on high

performance parallel computers and unacceptable for applications that

require very high network bandwidth.

MPI (Message Passing Interface) [6] is a recent message passing interface

standard. MPI allows flexibility in buffering that, in principle, provides

efficient performance on both slow and fast networks. However, the

current publicly available implementation of MPI buffers messages

unnecessarily on fast networks, producing very poor performance.

The specific performance data I discuss in this report will become out-of-

date fairly rapidly as hardware and software improvements are made.

The data are intended to illustrate the performance implications of

buffeting, not the performance of the computers being discussed.

2.0 Message Buffering

The distinguishing feature of the message passing paradigm for parallel

computation is that nodes transfer data using a cooperative send/receive

paradigm: one node "sends" data that is "received" by another. The data

in the local memory of the sending node is copied into the local memory

of the receiving node as shown in Figure 1.

(processor A)

memory

network

_ processor B)

memory

send(data) receive(data)

FIGURE 1. Basic message passing.

To describe buffering, it is convenient to divide process memory logically

into two types. User memory is explicit in the user program and accessed

directly by it. It consists mainly of user program data structures. System

memory is not accessed explicitly by the user program but is managed by

system libraries or possibly the kernel.

Although from the user's point of view data is transferred from user

memory on one node to user memory on another node, the

communication library may make a temporary copy in system memory.

This is called buffering. Data may be buffered at the sending node, the

receiving node, or both. Figure 2 shows the path of data that is buffered

on the receiving node.

(processor A _ (processor B)

user

system

user

rece ire (data)send(data)

FIGURE 2. Path of a message buffered at the receiving node

There are two good reasons to buffer data. The first is when the semantics

of send () specify that it must complete whether or not a corresponding

receive () is posted. Since the system may not have been told where to

put the data, it must make a copy. In SPMD applications, it is rarely

4

necessaryto have a non-blocking send () of this sort (see section 3.1). A

second reason for buffering is to free the processor from having to wait

on a slow network. In this case, the processor can make a local copy of the

data, tell the network to transfer the data when possible, and then

continue to perform useful work while the data is transferred.

Internode communication performance can be characterized by

describing how long it takes to perform a single data transfer between
two nodes and how the network handles multiple simultaneous data

transfers. The latter issue is part of a vast subject sometimes called

"scalability," and is not directly related to buffering.

Data transfer time is often a linear function of message size characterized

by latency (start-up time) and bandwidth (transfer rate):

transfer time = latency +
message size

bandwidth

Transfer time is smaller for lower latency and higher bandwidth. When

messages are short, latency dominates the transfer time. When messages

are long, bandwidth is most important. Messages are "long" or "short"
relative to a crossover size - bandwidth x latency, for which latency and

bandwidth are equally important.

In cases where transfer time is not linear in message size, it is common to

define "latency" as the minimum time to send a message (usually a

message of zero length) and "bandwidth" as the maximum effective

bandwidth, that is, message size divided by total transfer time for very

large messages.

Internode communication performance is usually orders of magnitude

worse than local memory performance. In the most recent generation of

parallel computers, however, internode bandwidth has begun to

approach local memory bandwidth. This change in system balance (ratio

of network bandwidth to local memory bandwidth) increases the effect

of message buffering on communication performance.

The change in system balance results from improvements in network

technology and the fact that RISC microprocessors, upon which parallel

computers are often based, typically have poor bandwidth to main

memory and a small cache. A memory to memory copy on a RISC

processor is done using a sequence of load and store operations. This

process is inefficient and very sensitive to the relative alignment of the
source and destination.

The performance implications of buffering are twofold. First, the speed of

copying is an upper limit on effective bandwidth for message transfers.

More specifically, assuming the network transfer and buffer copy occur

5

sequentially, the effective bandwidth be is the harmonic mean of the copy

bandwidth b c and the network bandwidth bn:

b cb ,,

b e - bc + b n

Even if the copy speed is equal to the network speed, effective bandwidth

is reduced by a factor of two.

The second effect of buffering is that the buffer copy is done by the

processor itself and therefore cannot be done asynchronously. This

reduces the benefit of overlapping computation and communication - an

important optimization in many codes. When copy bandwidth equals

network bandwidth, the benefit is lost entirely.

Both effects are most important for long messages since they affect

bandwidth but not latency. There is very little start-up cost associated

with a memory-to-memory copy.

3.0 NX Message Buffering

NX [3] is the native communication library on Intel parallel

supercomputers. The Intel Paragon is a distributed memory parallel

computer based on the Intel i860/XP microprocessor. The processors are

connected by a network with the topology of a 2-dimensional grid. The

Paragon can run either an enhanced version of the OSF/1 operating

system, provided by Intel, or the SUNMOS [7] operating system,

developed at Sandia National Laboratory and the University of New

Mexico. SUNMOS provides higher performance, less overhead, but also

less functionality. Both support NX, but implement it in slightly different

ways. Unless noted otherwise, the description below applies to NX under

OSF/1 AD, revision 1.1.4.

The four basic NX message passing primitives are csend (), crecy (),

isend () and irecv (). Semantically, they behave as follows.

• csend () sends a message. It returns whether or not a matching

receive has been called 1. The calling process is free to modify the

original data after csend () returns.

• isend () sends a message. It returns "immediately" whether or not

a matching receive has been called. The program may not modify

the data until verifying (using msgwait ()) that the message has

been sent. The network transfers the data asynchronously, that is,

outside the flow of control of the sending process. The processor can

do useful work while the message is being transferred.

1. This behavior is not documented explicitly, but is the way csend () has behaved historically
and is the way users expect it to behave.

6

• crecv() receivesamessage.It blocks until amatching message

arrives. When crecy () returns, the data may be used and modi-

fied.

• irecv () "posts a receive" and returns immediately. The program

may not use or modify the data until verifying (using msgwait ())

that the message has been received.

From the point of view of the calling process, csend () and crecy ()

initiate and complete a data transfer, while isend () and irecv ()

initiate a data transfer that proceeds independently of the processor.

The semantics of the NX message passing primitives do not specify the

path taken by the data. Specifically, they do not say anything about

buffering, csend () requires some sort of buffering for its

implementation, but how that buffering is done is not specified. Message

buffeting under NX is complex, nondeterministic, and undocumented.

The following description of buffering is based on an "experimental"

investigation of NX. It is appropriate for long messages (more than 100

bytes).

The path of a message sent from node A to node B using the NX
csend () or isend () routine is shown schematically in Figure 3. Data is

either transferred directly into user memory (path 1) or buffered in

system memory (path 2) depending on whether or not a corresponding

receive (crecy () or irecv ()) has been posted on node B.

(processor A) (processor B)

user path 1
(unbuffer_-'_) user

system

/ path 2__.._(buffered)

FIGURE 3. csend () and isend () data paths

If node B has already posted a receive, NX knows where to place the

incoming message from node A. If not, NX transfers the data into the

system memory of node B. This message buffering (or some variant) is

required by the semantics of c s end (), because it must complete whether

or not a matching receive has been posted. The semantics of i send () do

not require buffering but i s end () is implemented this way on the

Paragon.

7

If amessage has been buffered on the receiving side, it is copied into user

memory when the receiving node calls crecv() (Figure 4). If, instead of

crecy (), the receiving node calls irecv () followed by msgwai¢ (),

the details are much more complicated. The important fact is that the

copy does not proceed asynchronously (overlapped with computation).

When a buffered message is received by irecv () followed by

ms gwai t () the buffer copy is usually copied by ms gwa i t (). If,

however, there is an intervening crecy () for a (different) message that

has not arrived, the crecv () copies (entirely) the buffered message into

user space before waiting for its own message. This provides some

optimization if the message being received takes a long time to arrive, so

that the processor can make use of the idle time. It comes, though, at the

expense of clear, predictable behavior. A consequence is that a gsync ()

(a global synchronization, implemented with csend () and crecy ())

will cause buffered messages to be copied if a receive for them has

already been posted. The price of copying buffered messages is paid in

additional time for the gsync () to complete. A final complication is that

an intervening irecv ()/ms_,cait () pair, which is otherwise

equivalent to crecv (), will not cause the buffered message to be copied.

Buffer copying on the iPSC/860 and on the Paragon under SUNMOS is

different. On those platforms, buffer copying is done inside the

irecv (), not the msgwait (). Although the iPSC/860 and Paragon

documentation are unclear and contradictory, this behavior appears to be

incorrect because irecv () (Immediate RECeiVe) should return

immediately.

_ processor A) (processor B)

user I _
/ network ",,.,, crecy () or

system /" "",. tern II

FIGURE 4. Memory-to-memory copy for a buffered message

The Paragon has unusually high network bandwidth and low memory-

to-memory copy bandwidth. Under OSF/1, the copy is performed by the

library routine bcopy (), which performs at the slow speed of 4.8 MB/s,

compared to a effective network bandwidth of 35 MB/s (for unbuffered

messages). Under SUNMOS, message copy speed (copying is not done

by b¢opy ()) is about 19 MB/s, compared to a network speed of 175

MB/s. Intel has recently provided an optimized bcopy () that can

perform as fast as 70 MB/s (although copy speed is a very sensitive

8

function of buffer size and alignment, and canbe aslow as4.8MB/s).
The fast bcopy () temporarily leapfrogs OSF/1 network bandwidth but

performs at less than half of what the network will eventually be capable.

For comparison, NX on the Intel iPSC/860, a previous generation parallel

computer from Intel, uses the same buffering scheme, but performance

degradation due to buffering is much smaller because the system balance
is different: the network bandwidth of 2.8 MB/s is much slower than the

copy speed of about 19 MB/s.

3.1 NX Message Buffering in Real Applications

Because NX message buffering is complex and nondeterministic,

avoiding buffering in real applications can be difficult. The problem is

exacerbated by communication patterns commonly found in SPMD

codes. Message passing in real applications is almost always part of a

loosely synchronous data exchange. The logical flow of a typical SPMD

program looks like:

compute (local computation)

exchange (communication)

compute

exchange

etc.

The exchanges include both sending and receiving data: message traffic

is rarely unidirectional.

In the general case, a node may send to and receive from a laFge number

of nodes, but all the interesting buffering behavior can be seen by

examining a single exchange with one neighbor. Consider the exchange

implemented by the following pseudocode.

node A node B

csend(nodeB, bufl) csend(nodeA, bufl)

crecv (buf2) crecv (buf2)

Assume that all nodes are exactly synchronized. In that case, the

csend () s occur simultaneously and the crecy () s happen

simultaneously. Both messages are buffered, since no receive is posted

before the corresponding send. If, on the other hand, the nodes are not

synchronized, it is possible that the csend () and crecy () on one node

will happen before the other node reaches this block of code, resulting in
both buffered and unbuffered communication.

In the more general case of an exchange among a large number of nodes,

one send is always buffered. This happens no matter what the state of

synchronization, and further delays those nodes on which buffering

occurs. As information propagates in subsequent exchanges, the delay

propagates aswell so that the effective bandwidth is always limited

approximately by the message copy speed.

There is one case when the exchange illustrated above is necessary. This
is when bufl must be the same as buf2. Since in this case data must be

sent before new data is received, buffering is inevitable. Usually this

situation can be avoided, and it is rare in practice.

To explore truly interesting exchanges, we need to exploit the possibility

of overlapping communication with computation through the use of

isend () and irecv (). This is an important optimization on any

system where the network can operate independently from the compute

processor. A sophisticated version of the above exchange, which tries to

post the receive before the send and also to overlap communication with

computation, might look like the following:

node A node B

midl=irecv (bufl) midl=irecv (bufl)

mid2=isend(nodeB, buf2) mid2=isend(nodeA, buf2)

.. perform computation..

msgwait (mid2) msgwait (mid2)

msgwait (midl) msgwait (midl)

If the nodes are perfectly synchronized, the receive will be posted before

the send, and communication will be unbuffered. If the computation is

long enough, the costs of communication can be hidden entirely, because

the data will be available at the end of the computation (so that the

msgwait () returns immediately). If, however, the nodes are even

slightly out of sync (irecv () is very fast) the message will be buffered.

This has several consequences:

1. The maximum effective bandwidth will be significantly reduced.

2. The benefits of overlapping communication with computation will

be lost, as the message copy is done during the msgwait (), not

during the computation.

3. The delay caused by the extra time to copy the buffered message

further desynchronizes the nodes. The positive feedback effect

makes a state of synchronization unstable.

An inadequate "solution" is to move the i s end () below the

computation so that the receive is more likely to be posted before the
send. While it reduces the likelihood of buffered communication,

overlapping of computation and communication has been lost.

Furthermore, this scheme may fail due to load imbalance or other factors.

Finally, a state of loose synchronization resulting in unbuffered

communication is unstable, since the positive feedback discussed in item

3 above still exists. In order to overlap computation and communication

10

it is necessaryto separate both isend () and irecv () from their

corresponding ms gwa i t ()s by intervening computation.

One could try to patch the "'solution" by doing computation after both
isend () and irecv (). This scheme suffers from all of the above

problems to varying degrees. Although it may be possible to reduce the

likelihood of buffering, it is not possible to guarantee buffering won't

occur. Whether or not a particular scheme will work "most of the time"

depends on the application.

The only scheme that is guaranteed to prevent buffering is explicit

synchronization of nodes after the irecv () but before the isend ().

This ensures that all receives are posted before their corresponding
sends.

Synchronization is unappealing practically as well as aesthetically. It

affects performance both because it takes time to send the messages to

synchronize and because synchronization forces all nodes to wait for the

slowest. At a minimum, the time to synchronize is the latency for a single

message. It is tempting to dismiss the latency cost as small for the case

when messages being sent are large, but in certain well-tuned

applications both latency and message transfer time may be hidden

completely by doing asynchronous communication.

The importance of the second performance penalty of synchronization --

forcing all nodes to wait for the slowest- depends entirely on the

application. For SPMD codes on dedicated multiprocessors, the cost is

probably minimal. In other environments, such as a network of

workstations, synchronization can be costly. This is not an issue for NX

on Intel computers, but can be an issue for NX "portability packages"

running on workstations, and may be an issue for MPI.

NX programmers are familiar with two other important reasons to

synchronize, neither of which is directly related to message buffering. On

the Intel iPSC/860 it is necessary to synchronize to take advantage of the

bidirectional capabilities of the hypercube network [8]. This scheme has

the side-effect of avoiding buffering, but the performance gain from

bidirectionality is far greater than that due to the lack of buffering. A

second reason to synchronize is to make use of so-called "force type"

messages. These messages are never buffered and are discarded if no

receive is posted. They provide a slight reduction in latency on the

iPSC/860. Although reduction in latency is usually cited as the reason to

use forced messages, the "side effect'' of eliminating buffering gives a

comparable performance improvement on the iPSC/860 for message

sizes exceeding approximately 3000 bytes. On the Paragon, where lower

latency for forced messages has not been implemented, force types are a

useful tool to ensure that messages aren't buffered. For normal message

11

types, it is very difficult to tell when a message has been buffered.

Programs using force types will fail (possibly intermittently) if not all

receives are posted before their corresponding sends.

4.0 CMMD Message Buffering
CMMD [4] is the native message passing library on the Thinking

Machines CM-5. CMMD provides nearly complete control over

buffering. The five basic CMMD message passing primitives are

CMMD_send_block (),CMMD_send_noblock (),

CMMD send async(), CMMD receive block(),and

CMMD receive async().

• CblMD_send_block () blocks until a matching receive is posted.

The calling process is free to modify the original data after it com-

pletes.

• CMtKD send noblock () returns whether or not a matching receive

has been posted. The calling process is free to modify the original

data after it completes. It is semantically equivalent to csend ().

• CbIMD_send_async () is semantically equivalent to isend () .

• CMl__receive block () is semantically equivalent to crecy ().

• CbIMD receive async () is semantically equivalent to irecv ().

• CMt_ msg_wait () waits for completion of a transfer initiated with

an _async () call.

While the CMMD routines appear similar to NX routines, they behave

very differently with respect to buffering. CI,fl,fl9 send block () and
C_¢D send async () never buffer their messages. The message path

for these routines is shown in Figure 5.

(processor A)

t ed

system ,'"' '

network

(processor B)

ser

'"'""t system

FIGURE 5. CMMD unbuffered communication

Because CMMD send block () does not return until a matching receive

is posted, there is no need for it to buffer its messages.

CI,_ID send async () is implemented so that its message is not sent

until the destination node posts a receive, thereby eliminating the need

12

for buffering. There is no reason why i s end () could not or should not

be implemented this way.

Applications use CMMD_send_noblock () when non-blocking

communication is required and the buffer needs to be reused

immediately. If a receive has been posted, CMMD send noblock ()

sends its data immediately. In contrast to csend (),

CMMD send noblock () buffers its data on the sending side if

necessary. It then sends the buffered data asynchronously and returns.

This scheme avoids the problem of what routine should unbuffer the

data on the receiving side (e.g., irecv () or msgwait ()).

CMMD_send_noblock () has the restriction that it cannot operate on

parallel arrays, which further restricts its applicability.

(processor A) (processor B)

if receive posted
user user

\

system _] system

no receive posted I

FIGURE 6. Message path for CMMD_send_noblockO

By using CMMD_send_block () and CMMD_send_async (),and using

CMMD_send_noblock () only when necessary, CM]k4D applications can

avoid buffering almost entirely.

While CMMD gives necessary control over buffering on an fast network,

it would not run efficiently on a parallel computer with a slow network,

such as ethernet-connected workstations. Why buffering might be

desirable on such a network is explored in the next section.

5.0 PVM Message Buffering

PVM [5] is a freely-available message passing library developed at Oak

Ridge National Labs and the University of Tennessee. Although it was

originally developed for networks of workstations, it now runs on

several tightly coupled parallel computers, including the Paragon and
the CM-5.

The design of PVM reflects the fact that it was intended to run on

networks of workstations. Networks connecting workstations are

typically quite slow compared to those connecting nodes in high

performance multiprocessors. Latency can also be high. Under these

13

conditions, time to copy a message to or from a buffer is small compared

to network transfer time. Moreover, the synchronization required by

CMMD-style routines is expensive.

To operate efficiently on slow networks, PVM messages are buffered at

both the sending and receiving ends. Data is explicitly "packed" at the

sending node, sent, received, and then "unpacked" at the receiving node.

The actual data transfer proceeds asynchronously. This scheme has a

number of advantages from the point of view of performance and design.

For instance, no negotiation is required with the destination node before

a message is sent and no acknowledgment is required that it has been

received. Furthermore, multiple non-contiguous pieces of data can be

packed into the same message, avoiding the need to pay a high latency

cost for each of several messages. PVM can automatically convert

between data representations on different architectures. On very slow

networks, the performance cost of the extra copy is relatively small. The

message path for PVM message is shown in Figure 7.

However, when PVM is run on a machine with a very fast network, such

as the Paragon, buffering at both ends is a bottleneck. A message is

always buffered at least twice. Furthermore, PVM is sometimes built on a

transport layer that buffers messages (such as NX), so that messages are

often buffered three times. Indeed, peak message transfer rates using

PVM on the Paragon are about 2 MB/s (7 MB/s if the fast bcopy () is

used), an order of magnitude slower than NX messages, even though

PVM uses NX as the underlying communication mechanism.

(processor A) (processor B

user I]user
%_ t p

_Ill nl ill iii iii Ill Ill III lU III III II

[,,,,,,,,"network ",,,,,,,,,j..system

system ,,,h,' _K_ I...............I ,,,l,,,,,
asynchronous

FIGURE 7. Message path for PVM messages

An apparent counterexample to the above argument, that PVM is

doomed to poor performance on fast networks, is the T3D, a parallel

computer made by Cray Research. PVM is the native message passing

library on the T3D [9] and presumably would not have been chosen if it

had fundamental performance problems. The explanation is that "PVM"

14

on the T3D is not the same as the publicly available version described

above.

Cray has made some sophisticated optimizations that allow programs to

avoid buffering. The first of these is "in place" message packing. When

data is packed on the T3D, a program can specify that it not be copied,

i.e., that it should be left "in place." This eliminates a buffer copy at the

sending node. The price paid is that PVM/T3D provides no mechanism

to tell when a message has been delivered so that a program cannot tell

when it is safe to modify a buffer (this is equivalent to having i s end ()

without msgwait () under NX, or CMMD send async () without

CMMD msg wait () under CMMD). Programs must rely on explicit

synchronization to ensure that it is safe to modify a buffer. This makes

PVM programs written for the T3D nonportable. The second

optimization made by PVM/T3D is that data is not actually transferred

across the network until it is unpacked. This eliminates buffering on the

receiving side (for both normal and in place messages). In this scheme, it

is not possible to overlap computation and communication. On the other

hand, buffering has already eliminated most of the benefits of PVM's

asynchronous communication for fast networks, so this isn't much of a
loss.

6.0 MPI Message Buffering

MPI (Message Passing Interface) [6] is a new message passing standard

developed by representatives of industry, academia, and government

laboratories. It is designed to be portable, and to run efficiently on a wide

variety of parallel computers.

MPI provides a number of communication "modes," each with

potentially different buffering characteristics. These are the standard

mode, which will presumably be the most commonly used, synchronous

mode, and ready mode. For each mode, there are two s end () routines,

corresponding to csend () and isend () or CMMD_send_block () and

CMMD_send_async () -- a program isfreeto reuse a buffer afterthe first

type of send but must check for message completion afterusing the

second kind.

The synchronous mode sends behave identically to
CMMD_send_block () and CMMD_send_async (). Messages sent in

ready mode are discarded unless a receive has already been posted (this

functionality is equivalent to that provided by NX force types). These

send modes will presumably be used only for very specialized

applications and will give performance improvements on few
architectures.

15

The discussion in the MPI document of standard mode buffering is

deliberately vague. An MPI implementation may provide an arbitrary

amount of buffering (including zero buffering) for standard mode sends.

This allows the full range of behavior from c s end (), which never blocks

for a matching receive, to CMMD_send_block (), which always does. In

order to be portable, programs written in MPI must assume that a

standard send always blocks for a receive.

While this scheme originally appears to be a nightmare, providing the

user no control over buffering, it actually may allow optimal

performance on all platforms. All decisions about whether or not data

should be buffered can be made by the MPI implementor. On a fast

network, presumably MPI will be implemented without buffering. On a

slow network, it may buffer extensively. All that is required of an

application programmer is that he or she write a program which does not
deadlock even if all sends block for receives. What about cases where a

program requires a non-blocking send? The final MPI specification (not

available at the time of this writing, which is based on the November

1993 MPI draft) includes a buffered send to address this issue.

Whether or not MPI will actually be implemented efficiently on a variety

of platforms remains to be seen. One problem is that MPI may be built on

top of a transport layer that buffers messages. For instance, the publicly

available, portable version of MPI runs on top of NX on the Intel

Paragon, so that it inherits the buffering characteristics of NX.

A potentially far worse problem, however, arises because MPI generally
has to communicate more information than the underlying transport

layer provides. For instance, NX provides only a 32-bit tag to identify

messages. MPI messages are identified by a tag, a group and a context.

They may also contain information on the type of data in the messages.

Thus an MPI message cannot be translated directly into a single NX

message. To send a single MPI message, an MPI implementation must

either send more than one NX message or must copy MPI information

and user data into a larger buffer. This must be done at both the sending

and receiving ends, so that a message is buffered twice. This is what

happens for the portable version of MPI running on the Intel Paragon

and the CM-5. As shown in Section 7, corresponding effective bandwidth

for MPI is much lower than that of native message passing libraries on

these platforms.

The problems described above apply only to the publicly available

portable version of MPI. Native implementations of MPI can achieve

excellent performance. In particular, the implementation of MPI on the

IBM SP-1 achieves essentially the same latency and bandwidth as IBM's

proprietary message passing library, EUI-H [10].

16

7.0 Benchmarks

Benchmarks that measure communication performance can be

misleading because they usually measure transfer rates for unbuffered

messages. It is quite difficult to measure directly buffered communication

rates when buffering is nondeterministic. In the following, I report (when

possible) measured rates for unbuffered communication and for buffer

copying, and compute an effective buffered communication rate, which
is the harmonic mean of the other two. In the case of PVM, I measured a

communication rate that includes explicit buffering (packing and

unpacking). For MPI, the measured bandwidth reflects the implicit

buffering discussed in the previous section.

The benchmark I used to measure latency and bandwidth is a token ring

benchmark, where a message is passed around a loop of several

processors. The benchmark is structured so that receives are always

posted before the corresponding sends so that messages are never

buffered implicitly. Of course PVM messages are always buffered twice

explicitly: this scheme eliminates only unnecessary buffering in the

underlying transport layer. Message copy rates are measured by timing

the routine that does the copying - msgwait () in the case of NX and

CMMD send_noblock () for CMMD.

Table I summarizes the results from the CM-5 (CMMD 3.1), Paragon

(OSF/1 R1.1.4), and iPSC/860 at the Numerical Aerodynamic Simulation

facility at NASA Ames Research Center. PVM 3.2 runs on top of NX and

CMMD on the Paragon and CM-5, respectively. The version of MPI used

was the freely available (and unoptimized) version that is under

development at Argonne National Laboratory and Mississippi State

University. On the Paragon, MPI runs on top of a device independent

layer that is built on NX. On the CM-5, the device independent layer runs

on top of Chameleon, another portable message passing library, which

runs on top of CMMD. Latency and bandwidth results are "best case,"

rather than derived a best fit the message size/bandwidth relation.

Effective bandwidth for buffered messages is computed from bandwidth

and copy speed. All results are accurate to within 5%.

17

Paragon

OSF/NX

TABLE 1. Performance of NX, CMMD, PVM and MPI

on the Paragon, CM-5 and iPSC/860

effective

latency bandwidth
(asymptotic) bandwidth copy speed (buffered)

92 us a 35 MB/s 4.8 MB/s 4.2 MB/s

Paragon

OSF/NX (fast bcopy)

94 us a 35 MB/s 69 MB/s b 23 MB/s

Paragon 63us a 167 MB/s 19 MB/s 17 MB/s

SUNMOS/NX

Paragon 387 us c 2.0 MB/s NA NA

PVM 3.2 (buffered)

Paragon 388 us c 7.8 MB/s NA NA

PVM 3.2 (fast bcopy) (buffered)

342 us NA NAParagon

MPI

Paragon

MPI (fast bcopy)

iPSC/860

NX

CM-5

CMMD e

CM-5

PVM

CM -5

MPI

2.2 MB/s

(buffered)

343 us 7.7 MB/s b NA NA

(buffered)

72 us d 2.8 MB/s 19 MB/s

(minimum)

2.4 MB/s

80 us 8.7 MB/s 9 MB/s b 4.4 MB/s

573 us 3.2 MB/s NA NA

405 us 2.6 MB/s NA NA

a. Zero-byte latency. Asymptotic latency is about 117 us under OSF/1 and 90 us under SUNMOS.

b. Peak bandwidth. Bandwidth varies depending on exact size of buffer (as low as 4.8 MB/s Para-
gon/OSF buffer copy, 1.5 MB/s CM-5/CMMD buffer copy, 2.0 MB/s Paragon/PVM bandwidth)

c. Asymptotic latency. Latency for zero byte messages is 474 us.

d. Latency for message to neighboring node.

e. CM-5 results are for serial arrays, not parallel arrays.

The results in Table 1 show communication performance for contrived

benchmarks designed to measure low-level performance. The

performance implications of buffering for real applications are highly

complex and vary widely with type of application, algorithm,

implementation, hardware platform, etc. Applications which are most

affected by buffering are those which have large communication

requirements, which use long messages, and which overlap computation

18

with communication. Other factors, such as whether an application hides

latency by overlapping computation with communication, are also

important. Because the performance effects of buffering are so

application- and platform-dependent, and because it can be quite

difficult to isolate the effects of buffering, specific numbers do not have

much meaning.

8.0 Conclusions

I have shown that message buffering can be an important performance

issue when network speed approaches the speed at which a processor

can handle data. How important buffering is depends on the system

balance (ratio of network bandwidth to local memory bandwidth), the

design of the message passing library being used, and the application

being run.

Message passing libraries differ widely in how much control over

buffering they give to the user, and in how much buffering is required, at

a minimum, to send a message. I have discussed NX message buffering

in detail because it is the most complex, and illustrates a range of issues.

However, the effect of buffering on Paragon application performance is
modest.

Buffering is probably most important for MPI and PVM, message passing

libraries that promise portability over a wide range of systems. On fast

networks, however, their portability comes with a price, part of which is

a significant increase in message buffering. In the case of MPI, it may be

possible to eliminate buffering, but the current portable implementation

does not do that. PVM, on the other hand, does not appear to offer the

possibility of excellent performance on fast networks.

9.0 Acknowledgments

I had useful discussions with Thanh Phung, Rob van der Wijngaart, Ed

Hook, Bernard Traversat, Bill Nitzberg and Sam Fineberg at NAS which

helped clarify some of the issues described in this report.

References

[1] Bailey, D., Barton, J., Lasinski, To, Simon, H., editors. The NAS Paral-
lel Benchmarks NASA Technical Memorandum 103863 NASA Ames

Research Center, Moffett Field, CA, July 1993.

[2] Bailey, D., Barszcz, E., Dagum, L., Simon, H., NAS Parallel Bench-

mark Results, Technical Report RNR-94-006, NASA Ames Research

Center, Moffett Field, CA, March 1994.

19

[9]

[lO]

[3] Intel Supercomputing Systems Division, Paragon OSF/I C System

Calls Reference Manual, Intel Corporation, Beaverton, OR, 1994.

I4] Thinking Machines Corporation, CMMD Reference Manual, Cam-

bridge MA, 1993.

[5] Geist, A., Beguelin, A., Dongarra, J., Jiang, w., Manchek, R., Sun-

deram, V., PVM 3 User's Guide and Reference Manual, Oak Ridge

National Laboratory Report TM-12187, Oak Ridge, TN, 37831.

[6] Message Passing Interface Forum, Document for a Standard Message

Passing Interface, University of Tennessee, November 1993.

[7] Maccabe, B., and McCurley, K., SUNMOS for the lntel Paragon, San-

dia National Laboratory, 1993.

[8] Seidel, S., Lee, M., and Fotedar, S., Concurrent Bidirectional Commu-

nication on the lntel iPSC/860 and iPSC[2, CS-TR 90-06, Michigan

Technological University, Houghton, Michigan 49931-1295.

Cray Research, Inc., PVM and HENCE Programmer's Manual, SR-

2501 3.0, Mendota Heights, MN, November 1993.

Sam Fineberg, personal communication.

2O

Title:

Message Buffering and its Effect on the Communi-
cation Performance of Parallel Computers

Author:

William Saphir

Reviewers:

I have carefully and thoroughly reviewed this tech-
nical report. I have worked with the author(s) to en-
sure clarity of presentation and technical accuracy.
I take personal responsibility for the quality of this
document.

Bill Nitzberg

Sam Fineberg

_d}a Williams

Branch Chief: ,_
Approved: _j [{ "_ "__.--"

Date & TR Number:

1

